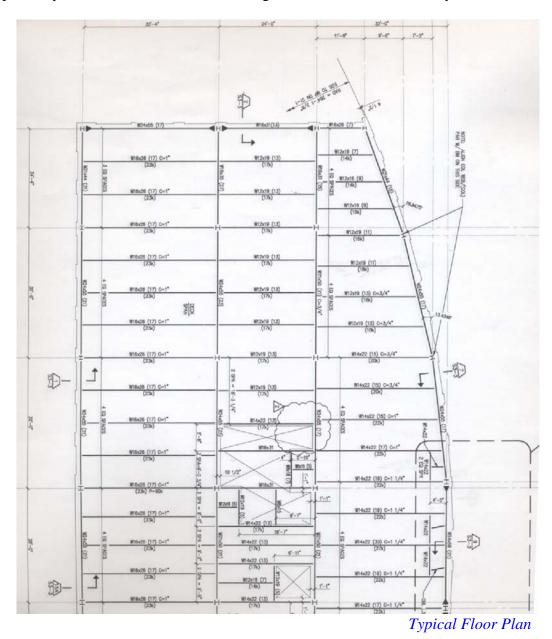
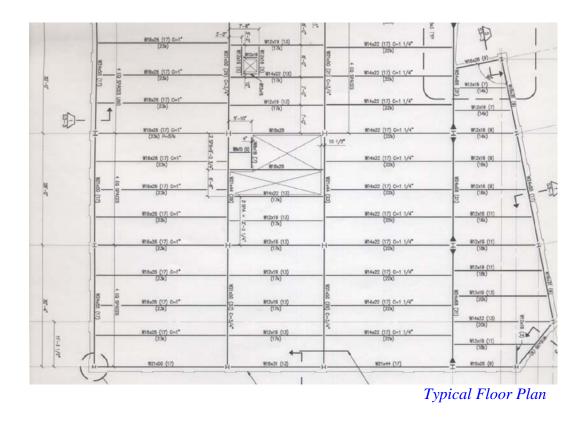
Page 1

David Lee AE 481W Structural Option Advisor: Andres Lepage URS Office Building October 27, 2006

STRUCTURAL TECHNICAL REPORT 2


Pro-Con Structural Study of Alternate Floor System


TABLE OF CONTENTS

Current Conditions		page 3-4
Loads		page 4-5
Reference Material		page 5
Original Floor System]	page 5-6
Alternative System 1		page 7
Alternative System 2		page 8
Alternative System 3		page 9
Alternative System 4		page 10
Alternative System 5		page 11
Comparison Chart		page 12
Considerations		page 12
Conclusion		page 13
Appendix B - De Appendix C - Co	culation sign Aids st Data eck Capacity	page 14-31 page 15-23 page 24-27 page 28-30 page 31

CURRENT CONDITION

The 5 story, 100,000 square foot URS Office Building currently employs slab on grade and composite slabs for the upper floors. Composite slabs consist of wide flange structural steel working compositely with the galvanized 20 gage 2" floor deck and 3-1/4" concrete. Headed studs $\frac{3}{4}$ " $\phi \times 4$ " are spaced evenly across the steel members to achieve composite action. The typical bays are $32' \times 33'$ and second through fifth floor has identical layout.

LOADS

Loads are calculated by design parameters given in ASCE 7-05 in conjunction with 2003 IBC. Dead load will be calculated according to the actual weight of the permanent building components. Live load will be directly taken out of 2003 IBC.

Dead Loads (PSF) – actual weight of the permanent building components

- Structural Steel ----- 6.5 PSF
- Metal Deck ------ 3 PSF
- Concrete ----- 43 PSF
- MEP ----- 15 PSF
- Partition ----- 20 PSF
- Total Dead Load ----- 87.5 PSF

Live Loads (PSF) – from 2003 IBC: Table 1607.1

- Roof Snow ----- 25 PSF
- Office Floor ----- 50 PSF
- Corridor ----- 100 PSF
- Lobby ----- 100 PSF
- Retail ----- 100 PSF
- Penthouse Floor ----- 250 PSF
- Mechanical Unit ----- 150 PSF + weight of equipment

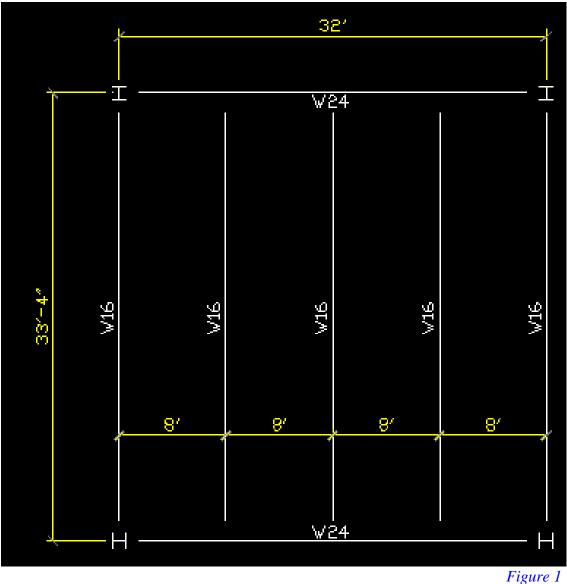
The above loads were calculated and utilized in technical assignment 1 to check member size and adequacy of design. The same loads will be used to design alternate floor systems. However the design aids employed define allowable load as total load minus self weight. Therefore the self weight of the member of the alternate system does not have to be assumed and checked. Dead load used to calculate the alternate systems was 35 PSF or MEP (15 PSF) plus partition (20 PSF) loads. Live load of 50 PSF was used for the office floor.

REFERENCE MATERIAL

DESIGN AIDS

- CRSI CONCRETE DESIGN HANDBOOK (2002)
- MANUAL OF STEEL CONSTRUCTION LRFD 3RD EDITION
- PCI DESIGN HANDBOOK 5TH EDITION (1999)
- POST-TENSIONED CONCRETE DESIGN WORKBOOK
- UNITED STEEL DECK DESIGN MANUAL AND CATALOG OF PRODUCTS

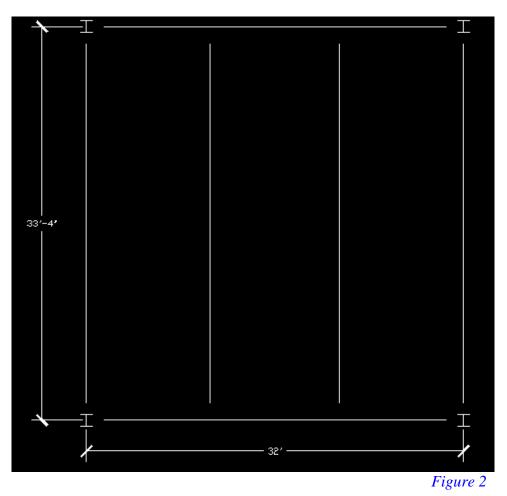
COST DATA


- RS MEANS ASSEMBLIES COST DATA 31ST ANNUAL EDITION (2006)
- RS MEANS BUILDING CONSTRUCTION COST DATA 64TH ANNUAL EDITION (2006)

ORIGINAL FLOOR SYSTEM

<u>COMPOSITE FLOOR SYSTEM</u>

Analysis of the composite floor system was performed both in RAM and by hand calculation. Hand calculation was done with the aid of the Steel Manual. Both analysis results were in agreement with the construction document. Below in *Figure 1* is the largest bay which is 32'x 33'4". Typical girders are W24x55 and typical beams are W16x26. Measuring from the top of concrete to the bottom of structural steel, depth was found to be 23.6". Self weight was calculated 50 PSF and according to RS Means cost was found to be \$20 per square foot. If cost of fireproofing is accounted for, the total cost would be \$20.80 per square foot.


rigure 1

Current floor system draws the best of concrete and steel. Relatively low self weight compared to concrete construction and added stiffness are some of the advantages of composite floor system. Reduction in steel tonnage compared to non-composite system is possible and total floor depth is satisfactory. Disadvantages are the issues of fire rating and constructability. The structural steel members must be fire-proofed which is time consuming and costly. Also composite construction is labor intensive.

ALTERNATE SYSTEM 1

<u>COMPOSITE FLOOR SYSTEM – DIFFERENT BEAM SPACING</u>

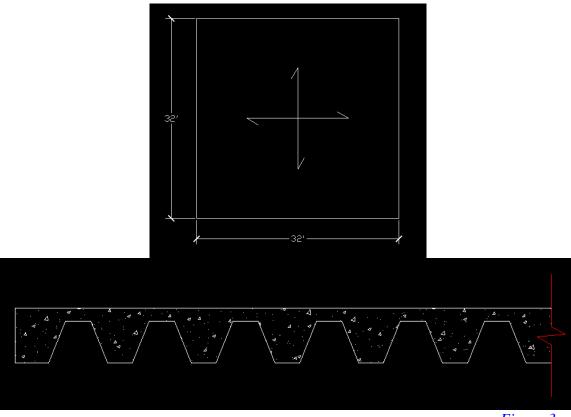
Under equal loading condition, typical bay had two filler beams instead of three (see *Figure 2*). With the help of the steel manual hand calculation was performed and new member sizes were W24x55 for the girder and W16x31 for the beams. The floor depth was essentially equal to the original system and self weight was approximately the same as original system. For composite construction, RS Means determines cost per square foot depending on bay size. Beam spacing does not contribute to construction cost due to the way charts are made. Although cost reduction is not indicated on RS Means, due to savings on labor cost due to less member being erected, larger spacing of the filler beams will reduce cost.

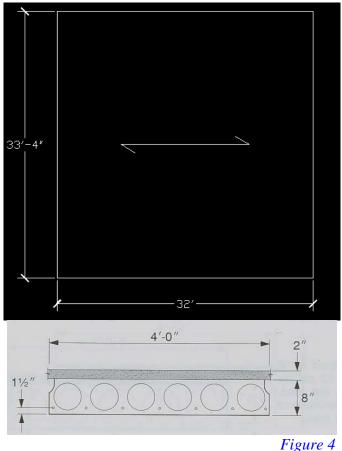
This modified composite system still has the advantages of the original system. Along with the aforementioned advantages, larger spacing of filler beams will reduce construction cost and increase constructability. A possible drawback is the vibration problem. Adequacy of the current deck size was checked and 20 gage steel deck can still be used for this floor system (see appendix D).

<u>ALTERNATE SYSTEM 2</u>

WAFFLE SLAB

Using the CRSI design handbook, waffle slab (see *Figure 3*) was designed and selected as the second alternative to the original floor system. Typical bay of 32'x 32' was used along with live load of 50 PSF and dead load of 35 PSF. These loads were factored to find adequate reinforcing of a waffle flat slab with 30"x 30" voids with 6" ribs @ 36". Depth of 13", self weight of 95 PSF was calculated. Price RS Means indicated was \$20.35 per square foot.



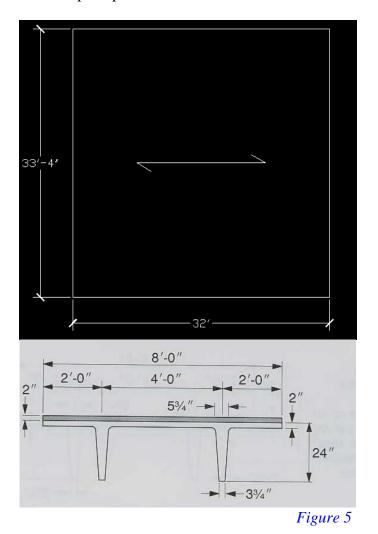

Figure 3

An advantage offered by the waffle slab is its floor depth. Having reduced more than 10" of total floor depth could result in higher floor to ceiling height or reduce building height leading to reduced cost. Also the price per square foot compared to the original system is reduced. Greatest concern is the significant increase in self weight. This added load could increase member sizes and even affect the foundation.

<u>ALTERNATE SYSTEM 3</u>

HOLLOW CORE

PCI design handbook was referenced to design the hollow core planks (see *Figure 4*). The hollow core planks were designed to span 32' and carry total service load of 85 PSF. 4'x 8" light weight concrete hollow core with 2" topping was selected for the third alternate floor system. Six number 8 straight (68-S) strands were used to span 32'. The 8" member and 2" topping add to 10" of total depth. 68 PSF is the self weight of the hollow core plus the topping. And cost of this floor system is \$21.30 per square foot.



Using the hollow core offers many advantages. First and foremost, hollow core planks can reduce construction time. Added to possible reduction in construction time are very small floor depth and the option to run MEP through the hollowed out areas of concrete. Ease of construction is another positive for this system due to its prefabrication. A downside is the increase in self weight. This added weight may require redesign of the foundation systems.

ALTERNATE SYSTEM 4

DOUBLE TEE

The fourth floor system investigated was the double tee (see *Figure 5*). With the aid of PCI design handbook, 8'x 24" light weight concrete double tee with 2" topping was selected. 4 number 8 straight strands were used to span 32'. 24" member with 2" topping made the total floor depth 26" and total self weight added up to 65 PSF. The cost of construction was \$20.38 per square foot.

The double tee is a cost effective alternative to the original construction. Being a prefabricated member, erection time can be reduced. The major downfall to this system is the 26" floor depth compared to the original 23.6" floor depth. Also the added self weight requires foundation design check.

<u>ALTERNATE SYSTEM 5</u>

POST TENSIONED SLAB

Post tensioned two-way flat slab was considered a possible alternative floor system (see *Figure 6*). Design of the slab was according to the post-tensioned concrete design handbook by Atlas Prestressing Corp. Bay size of 32'x 32' was selected and the thickness of slab for the span was 8.5". Calculated self weight of the slab is 106 PSF. According to RS Means, cost of this floor system is \$20.25 per square foot.

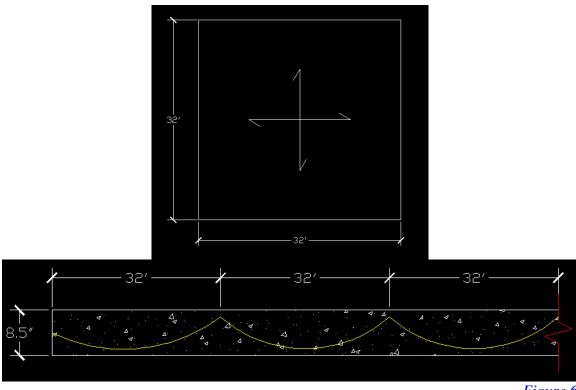


Figure 6

Post tensioned slab is found to have the least cost per square foot of construction. Add advantage to the cost is significant reduction in floor depth. Thickness of the slab being only 8.5", building height could be dramatically reduced. Reduction in building height will save cladding cost, cost of heating and cooling, and the cost of wires and pipes throughout the building. Large increase in self weight is a concern. Also for posttensioned slab, the building would be designed as a concrete structure. Therefore redesign of foundation can be expected.

COMPARISON CHART

SYSTEMS	DEPTH (inch)	SELF WEIGHT (PSF)	COST (\$/SF) material + labor
ORIGINAL composite	23.6	50	20.80 13.90 + 6.10 + 0.80*
ALTERNATIVE 1 change in beam spacing	23.8	50	20.80** 13.90 + 6.10 + 0.80*
ALTERNATIVE 2 waffle slab	13	95	20.35 10.65 + 9.70
ALTERNATIVE 3 hollow core	10	68	21.30 16.10 + 5.20
ALTERNATIVE 4 double tee	26	65	20.38 15.90 + 4.48
ALTERNATIVE 5 post tension	8.5	106	20.25 11.54 + 8.71

*Cost of fireproofing

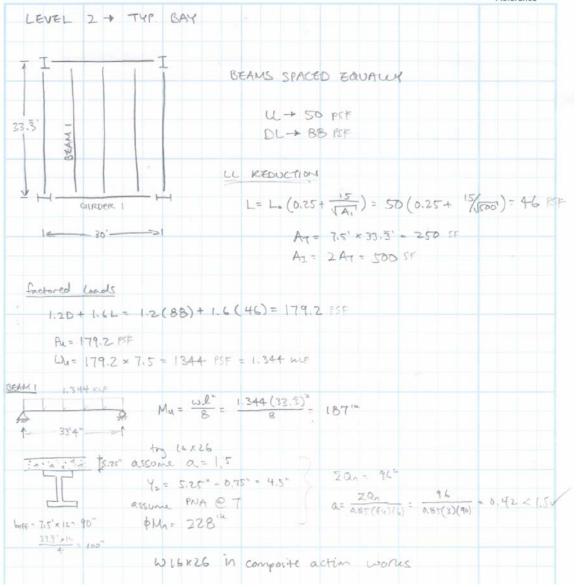
**Although not indicated in RS Means the change in beam spacing should lead to reduced labor cost

CONSIDERATIONS

Various systems were considered in alternative floor system analysis. Few systems that were not included in the written report but shown in the appendix were non-composite floor system and multi-span one way joist. Weighing the improvement versus the downside led to their exclusion in this report. Increase in cost and floor depth without much in return made the non-composite system very unappealing alternative. On site curing leading to increase in construction time along with significant increase in the self weight discounted the one way joist.

CONCLUSION

Of the alternative systems reported in this document, two systems will not be considered for further analysis. The waffle slab is not a viable option due to drastic increase in self weight. Almost doubling the self weight will lead to increase in member size and may necessitate redesign of the foundation. Also the double tee will not be pursued due to its increase in floor depth.


Although vibration was not considered in this preliminary design, the change in beams spacing offered a cost effective alternative floor system. The deck currently employed was found to be adequate. If floor vibration is in the acceptable range, this floor system would be worth pursuing. The hollow core may offer a substantial reduction in construction time and prefabrication increases the ease of construction. Hence hollow core is another viable alternative. Post-tension offers cost savings and the reduced floor depth makes it an attractive alternative. With the knowledge of its performance, current system is an efficient and reliable floor system.

APPENDICES

APPENDIX A: CALCULATIONS

- Original: composite floor system page 15, 16
- Alternative 1: change in beam spacing page 17
- Alternative 2: waffle slab page 18
- Alternative 3: hollow core page 19
- Alternative 4: double tee page 20
- Alternative 5: post tension page 21
- Consideration: non composite page 22
- Consideration: one way joist page 23

Original – COMPOSITE FLOOR SYSTEM

0				100000000
1.344 1 1.344 1 1.3	₩ A	P. P. P. J. J. J. GIKOER J	Pi=Pi=Pi= 44684 assone equal los next long	rel fran beans e
$M_{a} = \frac{P_{a}J}{4}$	$\frac{p_1}{p_2} + \frac{p_2}{p_1} + \frac{p_2}{p_2} + $	= 44.8(30) +	<u>44.8 (7.5)(15)</u> + <u>44.8 (</u> 30	7.5)(15) 30 = 6721*
I	try 24x55 assure a = 1.5 Ye = 4.5" assure PNA®7 \$Ma = 678 4 w 24x55	$\Sigma Q_n = 204^{ln}$ $a = \frac{204}{0.85(2)(40)}$ in composite a	= 0.89 < 151	
: From li sizes o	onds calculated chosen are also	composite been researable.	n and girders are e	adequate. The
35'×	is page 98 35' = bay size 195F = total (and	1.31		

Original – COMPOSITE FLOOR SYSTEM

mposite Diff. Space	ing
T GIRDERI T	
I	BEAMS SPACED EQUALLY
	DL= SD PR= DL= BB FSF
33'4	
33'4	LL RED.
	L= 50 (0.25 + 15/1711) = 41 PSF
H	$A_T = \left(\frac{32}{7}\right)^1 \times 33.5^1 = 355^5 5^2$
32'+	$A_{z} = 2A_{z} = 7115F$
factored loads	88) + 1.6 (41)= 171.2 PSF
1.20+1.66= 1.00 Pa=171.2 PSF	
	3 = 1826 MF = 1.826 KUF
wu = ITAC X	3 - 1000 00 - 10000 - 10
MI - WI6X31	
1.826 KUP	$M_{H} = \frac{\omega l^{2}}{5} = \frac{1.826 (33.3)^{2}}{8} = 253.6^{16}$
ALLER	Mu= 5 8 253.6
3314"	(assure a = 1.5") Zan = 114"
304 3	0" 1131 72: 4.5" 114 DELLE
	$\frac{2}{6} = \frac{2}{100} = \frac{100}{100} = \frac{100}$
DER 1 -+ W24×55	
	P. = P2 = 60"
P. Pz	assume equal load from beams on next bary
Arr 32 Arr	, (assume ands") zan= 704h
A	1= 640 " WZ9×55 assume PNACT a= 0.89 ≤ 1.5 / MA = 678"
$M_{u} = Pa = 60\left(\frac{pc}{3}\right)$	= 670 WRYXSS assume PNACT a= 0.09 allor
	PMh = 678
IS MEANS page 98	
	te } \$20/st

Alternative 1 – CHANGE IN BEAM SPACING

Although not indicated in RS MEANS LABOR Cass SHOULD DECLINE

...

Alternative 2 – WAFFLE SLAB

2 WAY SLAD + CRSI DESIGN HANDBOOK 2002 4	
32' × 32' bay	
U=50 P(# 3 1.20+16L= 116 PSF # -	
WAFFLE PLAT SYSTEM 30" × 30" VOIDS : 6" RIBS @	36*
fic= 4000 pri	
Fy= 60 000 psi	
Column Strip	Middle Strip
O Interior Span - Steel = 3.07 PSF	Steel = 3.07 PSF
33' > 32' NO. RIB = 5 Rotton	NO. RIB = 6 Thottom
150 PSE > 116 PSE > BARS/RIB = 1 #6	long hars = #5 lootton Short bars = #5 -
TOP BAPS = 25 46	Top bors = 12#5
Column Storp	Muldle Strip
@ Exterior Span Steel = 3.42 MF	NO. RID = 6 -1
33' > 32' (Top edge ber = 25#5 plus 10#5	No. RIDE 6 long love = # 6 botto
150 psk > 116 psk v Botton bure = 248 pur ris in 5 rise Top into bure = 27 #6	there bers #6 Ty int. bus = 13 #5
) Depth = 13" = 10" rib + 3" siab	
D.609 CK/SK	
WE. = 150 4/CF (0.609 CF/SE) + 3.42 PSF = 94.77	PSE
RS MEANS page 71	
35' × 35' - bay size	
174 MP = \$20.35/SP	

Alternative 3 – HOLLOW CORE

Hollow -	Core + PCI DESIGN HANDBOOK STM Edition
50002	= 32'
u=	
DL =	50 PSF } Total 85 PSF 1000001 #8"
	* 4'
	core 4'x 8" light weight conc. untopped (proje 2-27)
	ic = SDOD psi
	ci = 3500 psi
W	£.= 46 185F
St	rand Designation Code - 68-5 } Allowedde Service Load = 90 PSF Span 32' } Allowedde Service Load = 90 PSF
	Spen 32') 95>85 V
1 Hollow-	- Core 4'x10" Normal Weight Conc. Untopped (page 2-28)
	c = 5000 psi
	$E_{1} = \frac{3500}{68} p_{5} E_{1}$
	* 4' * "
St	rand Designation Code + 58-5 ? Allowable service load = 87 PSIE
	pen 32' Allowable forvice load = 81 in
1001101	AASE 0.00 72
	ANS page 72
	0'= span 7 \$8.53/50
(0	DPSE = SOPERIMPSED LOND
3 Holio	w- cone 4'x3" Light Weight Conc. 2" Normal Weight Topping (page 72"
	- Sadorri
	ci= 3500 psi
We	5 68 pet
5	mand Resignation Code - 68-53 Allowable Service lond = 103 MKK Spon 323 107 2851
	Star 35,)
- PC M	child made 73
	EANS page 73
100 00	= span st = suprimpared loud \$\$11.65/SF

.

Alternative 4 – DOUBLE TEE

Double Tee - PCI DESIGN HANDBOOK STM Edition	
SPAN = 32'	
LL = 50 PSF } Total 85 PSF 24	
O Double Tex 8'x24" light weight conc. untopped (page	e 2-10)
fic = Sious pri	
fy = 270,000 psi	
w6. = 40 PSF	
Strand Pattern Designation + 68-5 Allowable service span 36' > 32' Stillowable service	load = 11815F
span 36 > 32) (18) 85	1
- + RS MEAN'S page 74	
30' = Span	
· 30" = Span 100 PSK = superimposed Land } \$9.30/SF	
@ Double tee B'x 24" light Weight Conc. 2" Normal Weight Topping.	(page 2-10)
fice soopsi	
Fy = 270,000 psi	
WE = 65 MEF	
00, 33 121	
Strand Pattern Designation - 48-5 ? Allowable Service Load = 1	10 BF
spon 32' 5 110785	
-> RS MEANS rage 75	
30 = span 100 PSF = Cuperimposed load \$\$11.356/SF	

Alternative 5 – POST TENSION

2 WAY FLAT SLAB	-+ POST TENS	(DNED			
suggested span /	depth ratio = 4	.5			
t= 32'×12 = 8.5	5				
Gravity Loads -	8.5" slab = Partition =	106 PSF 20 PSF		e = 0.9 (106) = = 176 - 95 =	
	Live lovel =	50 PSF	whet	= 116 15	51 100
	Total load =				
, 32'	32'		321		
4.25"	1.ar	\land	/		
$Mpri = \frac{0.095(32)^2}{8} =$	12.16h		& Mn = -	12 =	6.9 14
a= 4.25"			S= 2x	85 = 144.5	1/3
F = 12.16 = 34.3	3		M = 6.	9(12)(1000) 144.5	- 2 573
F/A = 34.33/ (8.5×17	e) = 0.337 hsi				
		234	5 7.5. Fin 3	47.4 pri /	
f = (-F/A) =	M= -337 ± 5	77			1 .
		-710	< 0.6 fre =	2400 psi V	
Cost					
Labor + Material	+ Equiperent				
	40/04 + \$27/04	=\$772/04	=\$28.59/	CF	
1	+ RS MEANS	C. W. C. M.C.	an Dealer		110 20

Consideration – NON COMPOSITE

	L= Lo* (0.25+ - A 8'×	u DL	 SD PSE SD PSE Structural Sth Metal deck Concrete MEP Partition 	cel 6.5 P5F 3 P5F 43 P5F 15 PF 20 P5F 87.5 P5F		
	$\frac{2}{\frac{1}{2}} = \frac{2}{2} = \frac{2}{2} = \frac{3}{3} = \frac{1}{4}$ $\frac{1}{\frac{1}{2}} = \frac{1}{32} = \frac{1}{2} = \frac$	A DL	+ Structural St Metal dech Concrete MEP	3 pst +3 pst 15 pst 20 pst		
	$\frac{1}{32^{\circ}}$	A DL	+ Structural St Metal dech Concrete MEP	3 pst +3 pst 15 pst 20 pst		
	$\frac{1}{32^{\circ}}$		Metal dech Concrete MEP	3 pst +3 pst 15 pst 20 pst		
	$\frac{1}{32^{\circ}}$		Metal dech Concrete MEP	3 pst +3 pst 15 pst 20 pst		
	$\frac{1}{32} \xrightarrow{1}$ $\frac{1}{1} \xrightarrow{1}$ 1	15 (A2) = 50 4	MEP	15 PSF 20 PSF		
	$\frac{1}{32} \xrightarrow{1}$ $\frac{1}{1} \xrightarrow{1}$ 1	$\frac{15}{(A_2)} = 50$	MEP	20 PSF		
	$\frac{1}{32} \xrightarrow{1}$ $\frac{1}{1} \xrightarrow{1}$ 1	1 <u>5</u> (A ₂) = 50 4	Partition			
	L= Lo * (0.25+ - A 8'x	1 <u>5</u> (A ₂) = 5D 4		87.5 PSF		
	L= Lo * (0.25+ - A 8'x	15 (A3) = 50 M				
SEAM I	L= Lo* (0.25+ - A 8'×	(A) = 50 4				
SEAM I	L= Lo* (0.25+ - A 8'×	$\frac{15}{(A_3)} = 50 +$				
SEAM D	L= Lo* (0.25+ - A 8'×	$\left(\frac{15}{A_{2}}\right) = 50$				
	A 8' x	$\left(\frac{15}{(A_3)}\right) = 5D +$				
	A 8' x	(As) = 50 +				
	A 8' x	1015/	(0.25+152)) = 45 psr		
	C 214					
	1 - 1	33'4" = 267	54			
	Pro c 1 Pro	- 533 SF				
	1.7 . ~					
	factored loads					
	1.2D+1.6L= 1.	1075411	11-1-100 00	12		
	1.2D+1.6L= 1.	6(8(1))= (-6	(75)-1111			
-	Wu= 177 × B'=	1416 PLF -	1416 KUT			
Ę						
	ti 416 KLF		111/22 51			
		Mu= WX	= (.416(33.3) =	[97] 1ke		
-10	A- 00AM 77	-				
4	- 33 4					
	LRFD 300 Edition	table 5-	3 : most eco	onomic member	W16×31 -	· 4/1- 20
	-					
IRDER D	1.416 1015	P. P.	Pa Pa I	P.P.= 47.24		
				assume equal loa	1 Commenter in	and the
1	BEAM	A GIRDER 1	Pr	astore retruit tou	e is acanes y	- nur m
1	нинбисл Вели 274°	- '32' -				
27.	.6" 23.6"					
	Mu= P2l + Pibx +	labx 47.2	(32) 47.2(8	6)(16) 47.2 (8)(16) - Ter 2 14	
	Mu= 4 + 2	1 =	4 + 32	1 32	= 135.2	
	LRFD 3to Edition	table 5-3	& most economic	menser W24x	84 -> OMn= (340">1
RS	S MEANS page 8	4				
				10/10		
	= 35'x30' = bean = 250 PSF = total	x girder (Total Cost = ?	120.65/SF		
	1 250 PSF = total	lond			of deel and	

Consideration – ONE WAY JOIST

NE-WAY JOIST -	- CRSI DESIGNS	HANDBOOK	2002	
SPAN = 32'				
OL = 35 PSF }	1.2 D+1.6L = 1.2	(50) +116 (35)	= ((6 PSF	
(Standard One-1	way Joist Multi	ple spans		
) 30" form + 6	9			
f'c = 4000 pr	i			+
(fy= 60000 p	si f			
				11."
		*	-37"	
@ Interior Span =	32'			
A check not	neccessary if t	> la/21		
£ 2 32	(12)/21= 18.28"			
f = 19" = 15"	" deep rils + 3"	top sho (p	age 8-24)	:. A.
	5 @ 11 o.c. ? A			
BOTTOM BARS +				
wt. = 78 PSF	(table 8-1)			
@ Exterior Span =	32'			
	neccessary if t	= ln/18:5		
t 2 3	2 (17)/18.5 = 20.76			
IF Exterior Span	- 28			
	(2)/18.5- 18.16"			
	deep rib + 3"	top Slas (page	e 8-24) :	. Ar
Botton Bars #	4@ 10 0. c. Allow	vasce factored	(cod = 114 101	1101
Wt. 78 BF	(table 8-1)			
S MEANE page	69			
	sine ? \$16.4	elie		
0.0 0.0 0 0.00		ALE		

APPENDIX B: DESIGN AIDS

- Original: composite floor system page 24
- Alternative 1: change in beam spacing page 24
- Alternative 2: waffle slab page 25
- Alternative 3: hollow core page 26
- Alternative 4: double tee page 27
- Alternative 5: post tension page 27

Original – COMPOSITE FLOOR SYSTEM MANUAL OF STEEL CONSTRUCTION LRFD 3RD EDITION

Alternative 1 – CHANGE IN BEAM SPACING MANUAL OF STEEL CONSTRUCTION LRFD 3RD EDITION

Alternative 2 – WAFFLE SLAB

		2	Columns	$ \begin{array}{c} \ell_1 = \ell_2 \\ (t) \end{array} $	Total Depth = 13 in.	18- 0" D= 6.500 RIB ON COLUMN LINE 0.597 CF/SF	21-0" D= 9.500 RIB NOT ON COLUMN LINE 0.637 CF/SF	24"-0" D= 9.500 RIB NOT ON COLUMN LINE 0.613 CF/SF	27'- 0* D= 9.500 RIB NOT RIB NOT ON COLUMNN LINE 0.597 CF/SF	30'- 0" D=12.500 RIB ON COLUMN LINE 0.624 CF/SF	33'- 0" D=12.500 RBI ON COLUMN LINE 0.609 CF/SF	36"- 0" D=12.500 RIB ON COLUMN LINE 0.597 CF/SF
			Super-	Load (psf)	Rib	4888 <u>8</u> 999	488881 8888 8888 8888 8888 8888 8888 88	4385555	32055055	2005005	200	100 150
			(1)	Steel (psf)	b Depth	1.86 1.92 1.92 2.61	1.84 2.01 2.19 3.13	192 198 257 332 407	196 2222 303 399	2.12 2.295 3.533	225 406	2.52 3.15 3.93
		Sq		$C_1 = C_2$ (in.)	= 10 in	2222222	1272	12 12 12 12 12 12 12 12 12 12 12 12 12 1	888888	105 *	16 19 25	18 * 19 * 27 *
		Square Edge Column		Y.		0.664 0.667 0.711 0.735 0.782 0.830	0.735 0.763 0.791 0.818 0.874 0.634	0.801 0.831 0.852 0.852 0.628	0.824 0.824 0.886 0.632 0.632	0.829 0.887 0.933 0.626	0.867 0.922 0.931 0.621	0.875 0.926 0.620
COLINDE	-1-	Column	101	Stirrups	Total Slab [1-32%		11111	Sin 1		3 \$ 4 1	3 \$ 4 1
			Гор	NO Size +	Slab Depth = 3 in.	13+#5+ 0 13+#5+ 0 13+#5+ 0 13+#5+ 0 13+#5+ 0	15,#5+ 0 15,#5+ 0 15,#5+ 0 15,#5+ 0 15,#5+ 0	18.#5+ 0 18.#5+ 0 18.#5+ 0 18.#5+ 0 18.#5+ 1	20-#5+ 0 20-#5+ 0 20-#5+ 0 20-#5+ 1 20-#5+ 1	22.45+ 0 22.45+ 3 22.45+ 6 22.45+ 3	26-45+ 2 26-45+ 6 26-45+ 6 26-45+ 3	27-#5+ 3 27-#5+ 9 27-#5+ 5
		Co		No.		ພພພພພພ	44444	44444	4444	0,0,0,0,0	01010101	un un un
DANIELO	Rainforming	Column Strip	Bottom	Bars per Rib		2-#4 2-#4 1-#4 and 1-#5 1-#5 and 1-#5 1-#6 and 1-#7	2-#4 2-#4 1-#5 and 1-#6 1-#6 and 1-#7 2-#7	1-#4 and 1-#5 2-#5 1-#6 and 1-#7 2-#8 2-#9	2-#5 2-#5 2-#5	1-#5 and 1-#6 2-#6 2-#7 2-#8	2-#6 2-#7 2-#8 2-#8	2-#7 2-#8 2-#9
	nn Rare Fanh		Top	NO Size		13-#5 13-#5 13-#5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	18-#5 18-#5 18-#5 18-#5	23-55 23-55 25-555	22-85 24-85 24-85	25-表 31-表 32-表	31-#5 35-#8
				No. Ribs		ى ى ى ى ى ى ى ى ن	မာမာမာမာမာမာ	4 4 4 4 4 4	თთთთთ	ເກເກເກເກ	თთთთ	~~~~
	Diraction	Middl	Bottom	Long Bars		BEEEE	动动动性的	节节节节节	苏苏苏芝芝	苏苏苏王	苦苦苦生	悲悲悲
	1	Middle Strip		Short Bars		3311111	草基恭恭恭基	555555	节苏苏苏其	专志表表	专志表表	悲悲悲
			Top	No Size		5555555	55555555555555555555555555555555555555	******	*****	1999	13.10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	111-#5 113-#5 111-#6
		2	-M	Edge (ft-k)		8225638	47 80 142	1111 1111 1121 210	127 186 240	136 177 217 255	180 234 235	362 362
		Moments	+	Bot. (ft-k)		56 177 185 236	93 128 174 302 385	138 190 260 264 564	196 263 363 617	272 363 604	360 467 711	463 601 725
		0	-M	(ft-k)		76 121 144 235	125 309 309	186 242 565	264 502 547	367 584 586	485 768 892	623 976
			(1)	Steel (psf)	Total	1.84 1.84 1.84 1.84 2.28	1.82 1.82 1.82 1.82 2.69	1.86 2.05 2.78 3.49	1.86 2.02 2.61 3.55	1.94 2.03 3.12	2.06 2.46 3.07 3.63	2.16 2.79 3.62
		Inter		$c_1 = c_2$ (in.)	Depth =	555555	ក្ខដន់ដន់ដ	8755555 **	14 	5555	16 18 18	18 °
202		Square Interior Column	101	Stirrups	= 13 in.	3 3 S 4 1	3 S 4 1 3 S 4 1	3 3 S 4 1 3 S 4 1	3 S 4 1 3 S 4 1 3 S 4 2	3 S 4 1 3 S 4 1	3541 3541 3542	3541 3541 2542
INDE				No. Ribs	Rit	ພພພພພ	44444	44444	4444	თთთთ	თთთთ	5 5 5 5
INITEDIOD		Column Strip	Bottom	Bars per Rib	Rib Depth = 10 in.	2-#4 2-#4 2-#4 1-#4 and 1-#5 1-#5 and 1-#6	2.#4 2.#4 1.#4 and 1.#5 2.#5 2.#6	2-#4 2-#5 1-#5 and 1-#6 1-#6 and 1-#7 2-#7	2-#4 2-#5 1.#5 and 1.#6 1.#6 and 1.#7 1.#7 and 1.#8	1-#4 and 1-#5 2-#5 2-#6 1-#6 and 1-#7	2-#5 2-#6 1-#6 and 1-#7 2-#7	1-#5 and 1-#6 1-#6 and 1-#7 1-#7 and 1-#8
		-	Top	NO SiZe		00000000000000000000000000000000000000	73555555 55555555	18-55 18-55 18-55 18-55	20-#5 20-#5 23-#5 21-#6	22-#5 22-#5 26-#5 22-#6	25-#5 28-#5 30-#6	28-#5 37-#5 33-#6
DANIELC	Fanh		в	No. I Ribs	otal Sia	ట ట ట ట ట ట	ພພພພພພ	44444	თთთთთ	თთთთ	0000	777
	Vincelin	Middle	Bottom	Long Short Bars Bars	Total Slab Depth = 3 in.	EEEEEE	****	*****	32222	法法法法	法法法法	法建长
oo Daro	1	Middle Strip	-		h = 3 i	BRERE	#######	****	****	おおまま	訪訪訪 註	悲悲悲
0			Top	No size	2	555555	*****	977777	108888	10-55 55	10-35 10-35	12-35

CRSI Design Handbook 2002 page 11-20

Alternative 3 – HOLLOW CORE

and Pattern	Desi	gnat	tion					H	101		DW	-C	OR	E						Sect	tion I	rope	erties
S										4'-	0″ x	8″								Unt	oppe	d	Торр
L	straight							L	ight	wei	ght	Con	cret	е				А	=	2	15 ii	12	
	eter o		and	in 16	Sths													ĩ	=	1.60			3,529
	of stran										4'-(Уь	=	4.0		1.	5.70
							F	•	- 15		4 -()			-	2″		y _t	=	4.0	1 OC	٦.	4.30
loads show																		Sb	=	4	16 ir	าร	619
for untopped							"	-			and the second	0	0	STATES OF	1	-		St	=	41		13	821
oed members g-time cambe							Í	()	()() ()	() ()	8	11	bw	=	12.0			12.00
d load but d	do not	t inc.	lude	live	load.				1					0				wt	=	18	34 33	lf of	272 68
ck availability	of ligi	htwei	ght s	sectio	ns.													V/S	=	1.9	Sec. 27	nsf n.	00
acity of sections are similar. al hollow-core	For pr	ecise	e valu								5,00 3,5												
6 — Safe supe						sf														_			
3 — Estimated 4 — Estimated le of safe	d long-	time	cam	ber,	in.		and	(200	f) or	, ad c			(:									HC	
Strand	J		pus		SCIVI		Uau	(þs	i) ai		_	pan,		.)	1							10	Горр
esignation Code	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	346	297	257	224	196	172	152	135	120	107	95	85	76	68	61	55	49	44	39	35			
66-S	0.3	0.3	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.3	0.3	0.2	0.1	0.0			
	0.4	0.4	0.5			0.6	0.6	- And the start	0.6	0.5	0.5	0.5	0.4	0.3	0.2					-0.8	1970		
76-S		348 0.4	302 0.4	263 0.5	231 0.5	204	181	161	144	129	115	104	93 0.7	84 0.7	76 0.6	68 0.6	62	56	50	45	41	36	
10-0		0.5	0.6			0.7	0.7	0.8	0.8	0.8	0.8	0.7	0.7	0.6	0.5	0.4	0.6	0.5	0.4	0.3	0.2	0.0	
WARNES .		350	325	304	286		236	211	189	170	154	139	126	114	104	95	86	79	72	66	60	55	50
58-S		0.5	0.6	0.7	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.0	1.0	0.9	0.8	0.7
	+	0.7	0.8	0.9	0.9	1.0	1.1	1.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.1	1.1	0.9	0.8 90	0.7	0.5	0.2	0.0
68-S			0.7	0.8	0.9	1.0	1.1	1.1	1.2	1.3	1.3	1.4	1.5	1.5	1.5	1.6	1.6	1.6	1.6	1.6	76	70	64 1.4
		_	1.0	1.1	1.2	1.2	1.3	1.4	1.5	1.6	1.6	1.7	1.7	1.7	1.7	1.7	1.7	1.6	1.5	1.4	1.3	1.1	0.9
			343	10.000000	102.000	283	267	249	237	225	212	197	181	165	151	139	127	117	108	100	92	85	78
78-S			0.9	1.0	1.1	1.2	1.3 1.6	1.4 1.8	1.5	1.6	1.7	1.7	1.8	1.9	2.0	2.0	2.1	2.1	2.1	2.2	2.2	2.1	2.1
ole of safe	supe	rim	pos	ed s	servi	ice I	oad	(ps	f) ai	nd c	aml	oers	(in	.)				2″ N	lorm				3+2 Topp
Strand Designation								3				Spa	n, ft										
Code	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
	100000	277	242 0.4		186 0.5	163 0.5	144	127 0.5	113	100	88 0.5	78	69 0.4	60	53 0.3	45							
66-S	100000		0.5		0.5			0.3															
66-S	0.4		286	251	222	196	174	155	138	123		98	87		69	61	52	43					
	-		0.E					0.7			0.7			0.6									
66-S 76-S	-	0.5			0.6						0.3	0.2		-0.1					60	50	45		_
	-	0.5	0.6		200	258			100	101	150		1.1	1.1	99 1.1	90	81 1.0	72	62 0.9	53 0.8	45		
and a second	-	0.5		327	290 0.8			1.0	1.0	1.1	1.1	1.1				and the second s	15 30 70				0.7		
76-S	-	0.5		327 0.8	0.8 0.9	0.9 1.0	0.9 1.0	1.0 1.0	1.0 1.0	0.9	0.9	1.1 0.8	0.7	0.6		0.2		-0.2		-0.9			
76-S 58-S	-	0.5		327 0.8	0.8 0.9 323	0.9 1.0 304	0.9 1.0 278	1.0 1.0 250	1.0 1.0 225	0.9 204	0.9 184	0.8	0.7	138	125	114	103	93	-0.5 83	-0.9 73	-1.3 64	10000	48
76-S	-	0.5		327 0.8	0.8 0.9 323 1.1	0.9 1.0 304 1.1	0.9 1.0 278 1.2	1.0 1.0 250 1.3	1.0 1.0 225 1.3	0.9 204 1.4	0.9 184 1.5	0.8 167 1.5	0.7 151 1.5	138 1.6	125 1.6	114 1.6	103 1.6	93 1.6	-0.5 83 1.5	-0.9 73 1.5	-1.3 64 1.4	1.3	1.2
76-S 58-S	-	0.5		327 0.8	0.8 0.9 323 1.1 1.2	0.9 1.0 304 1.1 1.3	0.9 1.0 278 1.2 1.3	1.0 1.0 250 1.3 1.4	1.0 1.0 225 1.3 1.4	0.9 204 1.4 1.4	0.9 184 1.5 1.4	0.8 167 1.5 1.3	0.7 151 1.5 1.3	138 1.6 1.2	125 1.6 1.1	114 1.6 0.9	103 1.6 0.8	93 1.6 0.6	-0.5 83 1.5 0.3	-0.9 73 1.5 0.0	-1.3 64 1.4 -0.3	1.3	1.2 -1.2
76-S 58-S	-	0.5		327 0.8	0.8 0.9 323 1.1 1.2 332	0.9 1.0 304 1.1 1.3 313	0.9 1.0 278 1.2 1.3 297	1.0 1.0 250 1.3	1.0 1.0 225 1.3 1.4 263	0.9 204 1.4 1.4 238	0.9 184 1.5 1.4 216	0.8 167 1.5 1.3 197	0.7 151 1.5 1.3 179	138 1.6 1.2 163	125 1.6 1.1 149	114 1.6 0.9 136	103 1.6 0.8	93 1.6	-0.5 83 1.5 0.3	-0.9 73 1.5	-1.3 64 1.4	1.3	1.2 -1.2 64

Strength based on strain compatibility; bottom tension limited to $6\sqrt{f_{c}^{\prime}}$; see pages 2-2-2-6 for explanation.

PCI Design Handbook 5th Edition page2-27

Alternative 4 – DOUBLE TEE

Strand									[201	UB	LE	TE	E						Se	ction	Prop
	-No. of -S = st				resse	d					'-0"		-							Unt	toppe	d
108-D1									Lig	ghtw	reigh	nt Co	onci	rete				A	=		01 ir	
+ +	- No. of	depre	ssion	noin	ts		10	-		-	8'-				•			I Vt	=	20,9		4
	- Diame	ter of	strand	d in 1	6ths		2"	< 2'.	-0"	•	4'-1	1,010	-	2'-0	- 2	er.		y,	=	6.8	85 ir	i.
Safe load	is shown	inclu	de de	ead lo	ad o	f 10	1			_		5¾" -		-	Ţ			S		1,2		
psf for u topped r Long-tim dead loa	nembers. 9 cambe	, Rem ars inc	ainde lude	supe	live k rimpo	oad.	Ŧ.								+	24	17	w	t = 'S =	34	20 p 40 p	lf sf
dead load but do not include livi Key 118 — Safe superimposed serv 1.1 — Estimated camber at ere 1.4 — Estimated long-time can					e load	n.	F			f'c = f _{pu} =			si	- -3¾	17							
	Juniatou	long	ume	camb	Gi, III	•				pu										_		
Table o	f safe s	supe	rimp	ose	d se	ervio	e lo	ad ((psf)	and	d ca	mbe	rs (in.)						L	8L	N
Strand	e _{e, in.}		perimposed service load (psf) and cambers (in.) Span. ft										-									
Pattern	e _o , in.	36 118	38 103	40 89	42 78	44 69	46 60	48 53	50 46	52 40	54	56	58	60	62	64	66	68	70	72	74	1
68-S	11.15 11.15	1.1 1.4	1.2 1.4	1.2 1.5	1.3 1.5	1.3 1.5	1.4 1.5	1.4 1.4	1.4 1.4	1.3 1.2	35 1.3 1.0	30 1.2 0.8										
88-S	9.15 9.15	144 1.2 1.6	126 1.3 1.6	110 1.4 1.7	97 1.5 1.8	86 1.6 1.8	76 1.6 1.8	67 1.6 1.8	59 1.6 1.7	53 1.6 1.6	47 1.6 1.5	41 1.6 1.3	36 1.5 1.0	32 1.4 0.7	3							
88-D1	9.15 14.40		176 1.9 2.4	156 2.1 2.6	139 2.2 2.8	124 2.4 2.9	111 2.5 3.0	99 2.7 3.1	89 2.8 3.2	80 2.9 3.2	72 3.0 3.2	64 3.0 3.1	58 3.1 2.9	52 3.1 2.8	47 3.0 2.6	42 3.0	38 2.9	34 2.8				
108-D1	7.15					and	5.0		113 3.3	102 3.4	93 3.6	84 3.7	76 3.8	69 3.9	63 4.0	2.4 57 4.1	2.1 52 4.1	1.8 47 4.0	43 3.9	38 3.8	35 3.6	(3 (3)
128-D1	5.48 13.9						-		3.9	4.0	4.1	4.1	4.1	4.0	3.9	3.8	3.5 65 4.8	3.2 59 4.9	2.8 54 4.9	2.4 50 4.9	1.9 45 4.8	1 4 4
148-D1	4.29 13.65													-			4.7	4.5	4.2	3.8	3.4	
	5701																				BLD	T
Table of	safe s	super	rimp	osed	d se	rvic	e lo	ad (psf)	and	l cai	nbe	rs (i	in.)				2"	Nori	nal		-
Strand Pattern	e _e , in.	-						. 0					pan,									
autorit	e _{c, in.}	193	28 159	30 132	32 110	34 92	36 76	38 63	40 52	42	44	46	48	50	52	54	56	58	60	62	64	6
48-S	14.15 14.15	0.6	0.6	0.7	0.8	0.8	0.9	0.9	1.0 0.5	40 1.0 0.4	1.0 0.2											
68-S	11.15 11.15			185 0.9 0.9	157 0.9 0.9	133 1.0 0.9	113 1.1 0.9	96 1.2 0.9	82 1.2 0.9	70 1.3 0.8	59 1.3 0.7	50 1.4 0.5	41 1.4 0.3	34 1,4 0.0							392	
68-D1	11.15 14.65					166 1.2 1.2	143 1.4 1.3		106 1.6 1.3	91 1.7 1.3	79 1.8 1.2	68 1.9 1.1	58 1.9 0.9	49 2.0 0.7	42 2.0	35 2.0						
88-D1	9.15 14.40					116	200 1.8 1.8	175 1.9 1.9	153 2.1 1.9	134 2.1 1.8	117 2.4 2.0	103 2.5 1.9	90 2.7	0.7 79 2.8 1.7	70 2.9	61 3.0	53 3.0	46 3.1	40 3.1			
108-D1	7.15 14.15					-	1.0	1.0	1.0	1.0	2.0	1.9	1.9	1.7 106 3.3 2.4	1.6 94 3.4 2.3	1.3 84 3.6 2.1	1.0 74 3.7 1.9	0.6 66 3.8	0.2 58 3.9	51 4.0	45 4.1	
		-			-	-	-	-	-	-	-	-		2.4	2.3	2.1	1.9	1.6	1.3	0.8	0.3	5

PCI Design Handbook 5th Edition page2-10

Alternative 5 – POST TENSION POST-TENSIONED CONCRETE DESIGN WORKBOOK

APPENDIX C: COST DATA

- Original: composite floor system page 28
- Alternative 1: change in beam spacing page 28
- Alternative 2: waffle slab page 28
- Alternative 3: hollow core page 29
- Alternative 4: double tee page 29
- Alternative 5: post-tension page 30

Original – COMPOSITE FLOOR SYSTEM

10	IO Floor	Construction			milanyis	102.501	11 01	073		
10	10 256		Composi	te Beams, L	Deck & Slai	2				
	BAY SIZE	SUPERIMPOSED	SLAB THICKNESS	TOTAL DEPTH	TOTAL LOAD	COST PER S.F.				
_	(FT.)	LOAD (P.S.F.)	(IN.)	(FTIN.)	(P.S.F.)	MAT.	INST.	TOTAL		
00	35 x 35	125	5-1/2	2 - 8-1/2	170	13.90	6.10	20		
00		200	5-1/2	2 - 11-1/2	254	15.90	6.75	22.65		
00	35x40	40	5-1/2	2 - 5-1/2	85	11.50	5.35	16.85		
0		75	5-1/2	2 - 5-1/2	121	12.45	5.50	17.9		
0		125	5-1/2	2 - 5-1/2	171	14.25	6.20	20.4		
00		200	5-1/2	2 . 11.1/2	255	17.25	7.05	24.3		

RS Means page 98

Alternative 1 – CHANGE IN BEAM SPACING

RS Means page 98

Alternative 2 – WAFFLE SLAB

B10	010 Floor (Construction											
B1(010 227		Cast i	Cast in Place Waffle Slab									
	BAY SIZE	SUPERIMPOSED	MINIMUM	RIB	TOTAL	COST PER S.F.							
	(FT.)	LOAD (P.S.F.)	COL. SIZE (IN.)	DEPTH (IN.)	LOAD (P.S.F.)	MAT.	INST.	TOTAL					
6900	30 x 35	40	16	12	169	10.20	9.50	19.70					
7000	and the second	75	18	12	204	10.20	9.50	19.70					
7100		125	22	12	254	10.60	9.80	20.40					
7200	And the second s	200	26	14	334	11.55	10.35	21.90					
7400	35 x 35	40	16	14	174	10.65	9.70	20.35					
7500		75	20	14	209	10.85	9.85	20.70					
7600	First Man tol Designer	125	24	14	259	11.05	10	21.05					
7700	Rom 1 or 7 a	200	26	16	346	11.75	10.50	22.2					
8000	35 x 40	40	18	14	176	10.90	9.85	20.75					
8300	no fair-cury ton	75	22	14	211	11.20	10.10	21.30					
8500		125	26	16	271	11.65	10.30	21.95					
8750		200	30	20	372	12.60	10.85	23.45					
9200	40 x 40	40	18	14	176	11.20	10.10	21.30					
9400	the second states and	75	24	14	211	11.55	10.35	21.90					
9500		125	26	16	271	11.80	10.45	22.25					
0700	1015	10	00										

RS Means page 71

B10	10 238		Precast Bear	n & Plank	with 2" Top	ping			
T	BAY SIZE	SUPERIMPOSED	PLANK	TOTAL	TOTAL	CC	OST PER S.F.	116	
	(FT.)	LOAD (P.S.F.)	THICKNESS (IN.)	DEPTH (IN.)	LOAD (P.S.F.)	MAT.	INST.	TOTAL	
4300	20x20	40	6	22	135	14.35	5.55	19.9	
4400	RB1010	75	6	24	173	15.15	5.55	20.7	
4500	-010	100	6	28	200 .	15.60	5.55	21.1	
4600	20x25	40	6	26	134	13.45	5.55	19	
5000	RB1010	75	8	30	177	14.25	5.25	19.5	
5200	-100	100	8	30	202	14.25	5.25	19.5	
5400	25x25	40	6	38	143	14.85	5.50	20.3	
5600	121	75	8	38	183	14.85	5.50	20.3	
6000		100	8	46	216	16.30	5.20	21.5	
6200	25x30	40	8	38	144	13.85	5.20	19.0	
6400	161 0221	75	10	46	200	15.15	4.97	20.1	
6600	11101	100	10	46	225	15.15	4.97	20.1	
7000	30x30	40	8	46	150	15.05	5.20	20.2	
7200	1000 1000	75	10	54	181	16.10	5.20	21.3	
7600		100	10	54	231	16.10	5.20	21.3	
7800	30x35	40	10	54	166	14.95	4.94	19.8	
8000		75	12	54	200	15.60	4.76	20.3	
8200	35x35	40	10	62	170	15.45	4.94	20.3	
9300		75	12	62	206	16.65	5.60	22.2	
9500	35x40	40	12	62	167	15.95	5.55	21.5	
9600	40x40	40	12	62	173	16.75	5.55	22.3	

Alternative 3 – HOLLOW CORE

RS Means page 78

Alternative 4 – DOUBLE TEE

	0 239			" & 2" Topp					
	BAY SIZE (FT.)	SUPERIMPOSED LOAD (P.S.F.)	DEPTH (IN.)	Guideline Harder	TOTAL LOAD (P.S.F.)	COST PER S		TOTAL	
000	25x30	40	38		130	14	4.51	18.5	
100	RB1010	75	38		168	14	4.51	18.5	
300	-100	100	46		196	14.65	4.51	19.1	
600	30x30	40	45		150	15.20	4.48	19.6	
750		75	46	E YOU WITH L	174	15.20	4.48	19.6	
000	distances in the	100	54		203	15.90	4.48	20.3	
100	30x40	40	46		136	12.40	4.25	16.6	
300		75	54		173	12.95	4.25	17.2	
400		100	62	Completions of	204	13.60	4.25	17.8	
600	30x50	40	54		138	11.85	4.11	15.9	
800		75	54	department model	181	12.35	4.11	16.4	
600		100	54		219	13.60	3.87	17.4	
200	30x60	40	62		151	12.50	3.88	16.3	
400		75	62		192	13.10	3.88	16.9	
600		100	62		215	13.05	3.88	16.9	
800	35x40	40	54		139	13.20	4.24	17.4	
000		75	62		179	14.35	4.12	18.4	
250		100	62		212	14.65	4.12	18.7	
500	35x50	40	62		142	12.60	4.11	16.7	
150		75	62		186	13.15	4.11	17.2	
300		100	62		231	15.20	3.87	19.0	

RS Means page 79

Alternative 4 – DOUBLE TEE

Т	The loss				DAILY	LADOD			2006 BAR	COCTC		TOTAL
	03	410 Plant-Precast Structural Concr	ete	CREW		LABOR-	UNIT	MAT	LABOR	E CUSIS EOUIP.	TOTAL	TOTAL INCL 08P
00	1300	24" x 44"	R034105	C-11	22	3.273	Ea.	1.100	128	70	1.298	1.525
	1400	30' span, 12" x 36"	-30		24	3		1.200	117	64	1.381	1.575
ł	1450	18" x 44"			20	3.600		1,500	141	77	1.718	1,975
	1500	24" x 52"	1		16	4.500		1.925	176	96	2.197	2.525
ł	1600	40' span, 12" x 52"			20	3.600		2.200	141	77	2,418	2,750
	1650	18" x 52"	1.10.1		16	4.500		2,625	176	96	2.897	3.300
ł	1700	24" x 52"			12	6		2,875	235	128	3,238	3,725
	2000	"T" shaped, 20' span, 12" x 20"	1216		32	2.250		1.325	88	48	1.461	1.650
ł	2050	18" x 36"			24	3		1.500	117	64	1.681	1,925
	2100	24" x 44"			22	3.273		1.875	128	70	2.073	2.375
ł	2200	30' span, 12" x 36"	1.1		24	3		2,025	117	64	2,206	2.500
	2250	18" x 44"			20	3.600		2,550	141	77	2,768	3.125
ł	2300	24" x 52"	-		16	4.500		3,275	176	96	3,547	4,000
	2500	40' span, 12" x 52"			20	3.600		3,750	141	77	3,968	4,425
	2550	18" x 52"			16	4.500		4,475	176	96	4,747	5,325
	2600	24" x 52"			12	6		4,900	235	128	5,263	5,950
00	0010	PRECAST COLUMNS	R034105						01	112		
	0020	Rectangular to 12' high, small columns	-30	C-11	120	.600	LF.	42.50	23.50	12.85	78.85	102
	0050	Large columns			96	.750		74.50	29.50	16.05	120.05	151
	0300	24' high, small columns			192	.375		42.50	14.65	8	65.15	81
1	0350	Large columns	+	+	144	.500	*	74.50	19.55	10.70	104.75	128
00	0010	PRECAST JOISTS	R034105			197			-			
	0015	40 psf L.L., 6" deep for 12' spans	-30	C-12	600	.080	L.F.	7.10	2.80	1.06	10.96	13
ł	0050	8" deep for 16' spans			575	.083		11.85	2.92	1.11	15.88	1
	0100	10" deep for 20' spans			550	.087		20.50	3.05	1.16	24.71	2
1	0150	12* deep for 24' spans	+		525	.091	*	28.50	3.20	1.21	32.91	3
20	0010	PRECAST SLAB PLANKS	R034105	-				_			-	
	0020	Prestressed roof/floor members, grouted, solid, 4" thick	-30	C-11	2400	.030	S.F.	4.44	1.17	.64	6.25	
	0050	6" thick			2800	.026		5.50	1.01	.55	7.06	1
	0100	Hollow, 8" thick	CN		3200	.023	100	5.75	.88	.48	7.11	10000
I	0150	10" thick			3600	.020		6.10	.78	.43	7.31	
	0200	12" thick	1		4000	.018		6.90	.70	.38	7.98	
0	0010	PRESTRESSED CONCRETE post-tensioned in place	R034105									
	0020	See also Division 03230-600	-30			1		10,0210	E dia	101 P	The second second	
1	0100	Post-tensioned in place, small job	R034136	C-17B	8.50	9.647	C.Y.	585	355	32	972	1,22
	0200	Large job	-90		10	8.200		440	305	27	772	98

RS Means Building Construction Cost Data page 108

APPENDIX D: DECK CAPACITY

						L,	Unifor	m Live	Loads	s, psf *					
	Slab Depth	¢Mn in.k	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00	10.50	11.00	11.50	12.00
	4.50	40.27	400	370	315	270	235	205	180	160	140	125	110	100	90
0	5.00	46.44	400	400	365	315	270	240	210	185	165	145	130	115	105
9	5.25	49.53	400	400	390	335	290	255	225	195	175	155	140	125	110
<u>n</u>	5.50	52.61	400	400	400	355	310	270	235	210	185	165	150	130	120
5	6.00	58.78	400	400	400	400	345	300	265	235	210	185	165	150	135
N	6.25	61.87	400	400	400	400	365	320	280	245	220	195	175	155	140
2	6.50	64.95	400	400	400	400	380	335	295	260	230	205	185	165	145
	7.00	71.12	400	400	400	400	400	365	320	285	250	225	200	180	160
	4.50	48.60	400	400	385	335	290	255	225	200	175	155	140	125	115
e	5.00	56.18	400	400	400	385	335	295	260	230	205	180	165	145	130
Ð	5.25	59,96	400	400	400	400	360	315	275	245	220	195	175	155	140
<u>w</u>	5.50	63,75	400	400	400	400	380	335	295	260	230	205	185	165	150
5	6.00	71.32	400	400	400	400	400	375	330	290	260	230	210	185	170
0	6.25	75.11	400	400	400	400	400	395	345	310	275	245	220	200	180
N	6.50	78.90	400	400	400	400	400	400	365	325	290	255	230	210	185
	7.00	86,47	400	400	400	400	400	400	400	355	315	280	255	230	205

United Steel Deck Design Manuel and Catalog of Products page 39

The 20 gage 5.25" slab depth composite construction is more than adequate to carry the office live load of 50 PSF and the corridor live load of 100 PSF through the 11' span.